Location-Aware Online Learning for Top-k Hashtag Recommendation

نویسندگان

  • Róbert Pálovics
  • Peter Szalai
  • Levente Kocsis
  • Júlia Pap
  • Erzsébet Frigó
  • András A. Benczúr
چکیده

In this paper we investigate the problem of recommending Twitter hashtags for users with known GPS location, learning online from the stream of geo-tagged tweets. Our method learns the relevance of regions in a geographical hierarchy, combined with the local popularity of the hashtag. Unlike in typical collaborative filtering settings, trends and geolocation turns out to be more important than personalized user preferences. We evaluate in a time-aware setting, where evaluation is cumbersome by traditional measures, since we have different top recommendations at different times. We describe a time-aware framework based on individual item discounted gain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location-aware online learning for top-k recommendation

We address the problem of recommending highly volatile items for users, both with potentially ambiguous location that may change in time. The three main ingredients of our method include (1) using online machine learning for the highly volatile items; (2) learning the personalized importance of hierarchical geolocation (for example, town, region, country, continent); finally (3) modeling tempor...

متن کامل

Learning-to-Rank for Real-Time High-Precision Hashtag Recommendation for Streaming News

We address the problem of real-time recommendation of streaming Twitter hashtags to an incoming stream of news articles. The technical challenge can be framed as large scale topic classification where the set of topics (i.e., hashtags) is huge and highly dynamic. Our main applications come from digital journalism, e.g., for promoting original content to Twitter communities and for social indexi...

متن کامل

A hashtag recommendation system for twitter data streams

Background Twitter has evolved into a powerful communication and information sharing tool used by millions of people around the world to post what is happening now. A hashtag, a keyword prefixed with a hash symbol (#), is a feature in Twitter to organize tweets and facilitate effective search among a massive volume of data. In this paper, we propose an automatic hashtag recommendation system th...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Learning Spatiotemporal-Aware Representation for POI Recommendation

The wide spread of location-based social networks brings about a huge volume of user check-in data, which facilitates the recommendation of points of interest (POIs). Recent advances on distributed representation shed light on learning low dimensional dense vectors to alleviate the data sparsity problem. Current studies on representation learning for POI recommendation embed both users and POIs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015